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1 Linear algebra
1.1 Identity matrix

in 3D.

1 0

1 0

I= m2DorI= |0 1
0 1

0 0

= o O

1.2 Matrix multiplication

If A is an n x m matrix and B is a m X p matrix the matrix product AB is defined to be a n x p matrix
where each 4, j entry is given by multiplying the entries A;;, (across row i of A) by entries Bjj (down column
jof B), for k =1,2,...,m and summing the results over k: (AB);; = >_/" | AixBy;-.

1.3 The determinant and inverse of a matrix

If
All A12
A9y Ago
then detA = A11A22 — A12A21 and

1 Asg —Ajn
detA | _ 4, Ay

1.4 The trace of a matrix

The trace of a matrix is the sum of its diagonal components, e.g., trA = A1 + Ao



1.5 Outer product

The outer product u® v is equivalent to a matrix multiplication uvT, provided that u is represented as m x 1
. T
column vector and v as a n x 1 column vector (which makes v a row vector), e.g., (W ® v);; = u;v; or

Uy U1vy  U1V2  UIV3

T
uURXQv=uv = |yy |:111 () Ug} = |U2v1 UV U2V3
us Ugvy  Ugv2  U3V3

1.6 Matrix contraction (double dot product)

A:B= Z AijBij

ij=1

2 Numerical Integration

[ e~ 50 (0 + 10)

(trapezoidal rule) or

b
/ f(@)dz ~ (b—a)f ((a+b)/2)

(midpoint rule), both exact for linear polynomials.

2.1 Gaussian quadrature

1 n
/0 fx) do ~ Z F@s)w;

An n-point Gaussion quadrature yields an exact result for polynomials of degree 2n — 1 or less. For

the range [0,1] the Gauss points and weigts are given in Table 1. A function for computing the any order

Gauss-points and weights is given in the MATLAB function gauss.m!.

2.2 Gaussian quadrature for triangles

/Kf(ac)dK ~ area(K) Zf({i)wi

where area(K) is the area of the triangle K, & are the Gauss points (integration points) and w; are the Gauss
weights. Note that one-point integration is exact for up to linear polynomials, that is linear triangles.

area(K) = /K drdy = /K det(J)dédn = det(J (&) widK

LGolub-Welsh algorithm taken from L. N. Trefethen, Spectral Methods in Matlab, SIAM, 2000 p.129




Gauss order n | Polynomial degree w; T;
1 1 1 1/2
2 3 12 | 1-2
1/2 | L4838
3 5 5/18 | & — 35
4/9 :
5/18 | 5+ YR°

Table 1: Gaussian quadrature for & € [0,1]
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Figure 1: Gauss points for quadliteral

where dK = 1/2 is the area of the parametric triangle.
For the quadrature points and weight, see Table 2, for higher order scheme see the function trigauc.m.

2.3 Gaussian quadrature for quadliterals

/Kf(a:)dK ~ area(K) Zf(:ci)wi

where area(K) is the area of the quadliteral K, x; are the Gauss points (integration points) and w; are the
Gauss weights. The Gauss-points and weights for each dimension are given by Table 1, see Figure 1 for 2D,
use the function GaussQuadliteral.m. Syntax: [GP,GW] = GaussQuadliteral (order)



Number of points n  Polynomial degree  &; i w;
1 1 1/3 1/3 1
1/6 1/6 1/3

3 2 2/3 1/6 1/3
1/6  2/3 1/3

1/3 1/3 -9/16

A 5 3/5 1/5 25/48

1/5 3/5 25/48

1/5 1/5 25/48

0 0 1/20

1/2 0 2/15

1 0 1/20

7 4 1/2 1/2  2/15
0 1 1/20

0 1/2 2/15

1/3 1/3  9/20

Table 2: Quadrature rules for a triangle in £, 7 € [0, 1]




3 Linear map, 1D

Element stretches from z7 to zo, map: © = @1(&)z1 + @2(§)zs = (1 — &g + a2, 0 < & < 1. Then
pi(z) = pi(€(x)) = Pi(§),

dj_x = dei  1dgp;
d 7V T e T hde

and [ flajds = | " flal€))hde

4 Linear map of elements

Isoparametric (linear) map from the reference element K in the domain 0 < £ <1, 0 < 7 < 1 to the physical
element K, is given by

3 3
= (Lo S W
i=1 i=1
where for the triangle we have the parametric basis functions
()51:1_6_777 @2255 @3:777

n

and for the bilinear element we have

¢1=01=8A—=n), 2 =E0—n), $3 =18, ¢a=n(1—-&).

n
A
4 3
1 2 5
Under this map, derivatives transform as

Oy 0pi 9z Oy
Ov | — g1 | % | where J = |9 9|
O 9¢i 9z Oy
oy on on  On

g—f = %—‘g - &, ete., and @ (z,y) = $(&,n) if (1) holds.

~ Change of variables in integrals:



/ f(zy) dz = / £ (@€, m)y(€,m)) det den.
K K

5 FEM, 1D

Consider the following weak form: Find w such that

b b b
/ dﬁ@ dx + / uv dl‘ = / f’U dl‘ for all v
o dzrdz a a

We want to approximate u and % using Galerkin’s method using one or several basis functions ¢;. More

precisely we want to find a set of discrete values u; such that u ~ Y7 | p;u; = ¢ -u and % ~ %ui =
de

72 - u, where ¢ = [©1, 02, ..., o] and u = [uy, ug, ...,un]T. We insert the approximation into the weak form
and get:

b b n b b T
Qudo gy ne doi, \ 40 g, _ [ deides = (%) % -
/a dx dx de/a ;(dxuz) dx dx_/a dz dz do (u1, s tn) - = . \dz ) dx dru =Su
d

arn

b b [ m b b
/ uv dx %/ (Z %‘W) @, dz :/ pip; dx (ul,...,un)T :/ <pTgo dx u=Mu
a a i=1 a a

. b .
and with f; fvdx = [%v}a = f we arrive at

(S+M)u=f

6 FEM, heat conduction 2D

The governing equation for heat conduction: —V - (kVu) = fin Q, u = gp on 0Qp, —kn - Vu = gr on 0Qp.
Weak form: find u, such that

/kVu'Vde:/fde+/ grv ds for all v, v =0 on 0Qp.
Q Q oNp

Approximation u ~ U = 3.7 | ¢;(z,y)u; = ¢-u, VU = Bu leading to Su = f, where ¢ = [¢1, p2, ..., ¥n],

T

u= [Ul,UQ, "'aU‘n} ’
D1 Ops ... Opa . . T
I or ,SK:/BdeK,szfwde+/ o g ds,
9p1  Op2 . Opn K K OKF
Oy Oy dy

where Sg is the element stiffness matrix for element K and fx the element load vector.



7 FEM, elasticity 2D

The governing equation for static linear elasticity:

—V.o=f in

o =AV-ul +2ue(u) in
=0 on

o-n=t on

where the Lamé parameters are defined as

FEv

A= (I+v)(1—2v)

and where F is the Young’s modulus and v t
Weak form: find u such that

Q(equilibrium)

Q(small strain material behaviour, Hooke’s law)
O p(prescribed displacements)

O (prescribed traction forces),

E
(Plane strain) or A = % (Plane stress),
—v
_ E
F=sa+wy

he Poisson’s ratio.

/o-('u):s('u)dQ: f~de+/ g-vds forallv, v=0on0dQp.
Q Q Qp
Mandel notation
Oz €z % 0 u ai;twr
oy = oy EM(U) = gy = 0 % um — aaT:Jy
19 19 Yy 1 Qu, 1 Ou
Toy V2esy Vidy V3os NeR TRV R
and we have that e :e = ep;-epy and o : € = szwaM.
Approximation u ~ U = (31, @i(z, y)ul, Y1 pi(z, y)ul) = ®u, where
0 0 n O T
o= | 2 v ; u:{u}g uy, uioud }
0 ®1 0 Y2 0 ©n
Then
Sk == / (2uBl B. 4+ A\Bj,,Bgi,)dK
K
where

2
0 o 0
Oy Op2
dy 0 Y
1 01 1 9y 1 Ops
V2 Oz 2 Oy 2 Oz



and

Bdiv = [daﬁl

Similary the load element vector is defined by

£ ::/ @' f(z) dK+/ & grdK
K OKr

which leads to the linear system Su = f.

8 Post processing of linear elasticity

8.1 Computing the strain matrix

Ouy 1 ( Ouy + Ouy
ox 2 oy ox
e =
1 ( Oug + Ouy Ouy
2\ 9y ox oy

this is approximated, using the basis functions, by

Op

—_—0 . u
ox T
() meaw) = |
5(%'ux+%'uy)
de _ | dp dp Opn — —
where 9. = 71 T; W,gp_(p(ac,y)anduw— u
dp1 Do
B = ox ox
Op1  Opo
oy oy
and Vu = Bu we arrive at
1 T
eqa(u) = 3 (Vu" + Vu) =

8.2 Computing the stress matrix from the strain

o =2ue(u) + Mre(u)I =~ 2ue,(u) + Mreg(u)l ~

Op

Op
ox uw+87yu1/

where tre(u) = e, (u) + ey(u) =V -u~

% ((Bu)T + Bu)

Oz Txy

Tey Oy



8.3 Computing principle stresses/ strains

Solve |o — XI| = 0, with |.| = det(.) which leads to the equation

Y2 — (0 +0y)E + 0p0y — Ta%y =0

Ty
principal stresses. The principal strains can be computed the same way. In MATLAB this is done by the

eig() function, see the help files for more info.

note that (o, +0,) = tro and 0,0, — 72, = |0, 80 £1 2 = Ltro £/ (%tro-)2 — ||, where ¥; and X9 are the

8.4 Equivalent strain

A scalar quantity called the equivalent strain, or the von Mises strain, is often used to describe the state of
strain in solids.

2 2 1
Eeq = \/BEdev . gdev — \/Sgéijevgéijgev; Edev —c— gtr(e)I
8.5 Von Mises stress

State of stress ‘ Boundary Conditions ‘ von Mises Equations

2

General 3D No restrictions oy = \/% [(aw —0,) 4 (0y—0.)° + (0. —02)> +6 (02, + 02, + 031)}

General plane stress (2D) | 0. =0y, =0., =0 Oy = \/ 02 — 0,04+ 02 + 302,

8.6 L, projection

If we want to take a field that exists inside the elements and put it in the nodes we basically want to minimize
u — up, where uy, is the element field and w is the nodal field. We chose to minimze the error on average, this
means that we want to minimize

€:= /Q(u—uh)2 dQ

We can achive this by setting up the problem: Find u such that

/Q(ufuh)UdQ:O

Rewrite this by multiplying v into the parenthesis

/ude:/uhde
Q Q

Now apply Galerkin and approximate u ~ ), ¢;u; and insert into the equation above

/g@igoj dQu; = / upp; dQ
Q Q



or

we can then get the averaged nodal values by

10



