
FORMULARY
Basic FEM Analysis

February 10, 2021

1 Linear algebra

1.1 Identity matrix

I =

1 0

0 1

 in 2D or I =


1 0 0

0 1 0

0 0 1

 in 3D.

1.2 Matrix multiplication
If A is an n ×m matrix and B is a m × p matrix the matrix product AB is defined to be a n × p matrix
where each i, j entry is given by multiplying the entries Aik (across row i of A) by entries Bjk (down column
j of B), for k = 1, 2, ...,m and summing the results over k: (AB)ij =

∑m
k=1AikBkj .

1.3 The determinant and inverse of a matrix
If

A =

A11 A12

A21 A22


then detA = A11A22 −A12A21 and

A−1 =
1

detA

 A22 −A12

−A21 A11


1.4 The trace of a matrix
The trace of a matrix is the sum of its diagonal components, e.g., trA = A11 +A22

1

1.5 Outer product

The outer product u⊗v is equivalent to a matrix multiplication uv
T
, provided that u is represented as m×1

column vector and v as a n× 1 column vector (which makes v
T
a row vector), e.g., (u⊗ v)ij = uivj or

u⊗ v = uv
T

=


u1

u2

u3

[v1 v2 v3

]
=


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3


1.6 Matrix contraction (double dot product)

A : B =

n∑
i,j=1

AijBij

2 Numerical Integration∫ b

a

f(x)dx ≈ b− a
2

(f(a) + f(b))

(trapezoidal rule) or ∫ b

a

f(x)dx ≈ (b− a)f ((a+ b)/2)

(midpoint rule), both exact for linear polynomials.

2.1 Gaussian quadrature ∫ 1

0

f(x) dx ≈
n∑
i=1

f(xi)wi

An n-point Gaussion quadrature yields an exact result for polynomials of degree 2n − 1 or less. For
the range [0,1] the Gauss points and weigts are given in Table 1. A function for computing the any order
Gauss-points and weights is given in the MATLAB function gauss.m1.

2.2 Gaussian quadrature for triangles∫
K

f(x)dK ≈ area(K)
∑

f(ξi)wi

where area(K) is the area of the triangle K, ξi are the Gauss points (integration points) and wi are the Gauss
weights. Note that one-point integration is exact for up to linear polynomials, that is linear triangles.

area(K) =

∫
K

dxdy =

∫
K̂

det(J)dξdη =
∑

det(J(ξi)widK̂

1Golub-Welsh algorithm taken from L. N. Trefethen, Spectral Methods in Matlab, SIAM, 2000 p.129

2

Gauss order n Polynomial degree wi xi

1 1 1 1/2

2 3 1/2 1
2 −

√
3

6

1/2 1
2 +

√
3

6

3 5 5/18 1
2 −

√
3
√

5
10

4/9 1
2

5/18 1
2 +

√
3
√

5
10

Table 1: Gaussian quadrature for ξ ∈ [0, 1]

Figure 1: Gauss points for quadliteral

where dK̂ = 1/2 is the area of the parametric triangle.
For the quadrature points and weight, see Table 2, for higher order scheme see the function trigauc.m.

2.3 Gaussian quadrature for quadliterals∫
K

f(x)dK ≈ area(K)
∑

f(xi)wi

where area(K) is the area of the quadliteral K, xi are the Gauss points (integration points) and wi are the
Gauss weights. The Gauss-points and weights for each dimension are given by Table 1, see Figure 1 for 2D,
use the function GaussQuadliteral.m. Syntax: [GP,GW] = GaussQuadliteral(order)

3

Number of points n Polynomial degree ξi ηi wi

1 1 1/3 1/3 1

3 2

1/6 1/6 1/3

2/3 1/6 1/3

1/6 2/3 1/3

4 3

1/3 1/3 −9/16

3/5 1/5 25/48

1/5 3/5 25/48

1/5 1/5 25/48

7 4

0 0 1/20

1/2 0 2/15

1 0 1/20

1/2 1/2 2/15

0 1 1/20

0 1/2 2/15

1/3 1/3 9/20

Table 2: Quadrature rules for a triangle in ξ, η ∈ [0, 1]

4

3 Linear map, 1D
Element stretches from x1 to x2, map: x = ϕ̂1(ξ)x1 + ϕ̂2(ξ)x2 = (1 − ξ)x1 + ξx2, 0 ≤ ξ ≤ 1. Then
ϕi(x) = ϕi(ξ(x)) = ϕ̂i(ξ),

dx

dξ
= x2 − x1 = h,

dϕi
dx

=
1

h

dϕ̂i
dξ

, and
∫ x2

x1

f(x)dx =

∫ 1

0

f(x(ξ))hdξ

4 Linear map of elements

Isoparametric (linear) map from the reference element K̂ in the domain 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 to the physical
element K, is given by

(x, y) =

(
3∑
i=1

xiϕ̂i(ξ, η),

3∑
i=1

yiϕ̂i(ξ, η)

)
(1)

where for the triangle we have the parametric basis functions

ϕ̂1 = 1− ξ − η, ϕ̂2 = ξ, ϕ̂3 = η,

ξ

η

1 2

3

and for the bilinear element we have

ϕ̂1 = (1− ξ)(1− η), ϕ̂2 = ξ(1− η), ϕ̂3 = ηξ, ϕ̂4 = η(1− ξ).

ξ

η

1 2

34

Under this map, derivatives transform as∂ϕi

∂x

∂ϕi

∂y

 = J−1

∂ϕ̂i

∂ξ

∂ϕ̂i

∂η

 , where J =

∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

 ,
∂x
∂ξ = ∂ϕ̂

∂ξ · xc, etc., and ϕi(x, y) = ϕ̂(ξ, η) if (1) holds.
Change of variables in integrals:

5

∫
K

f(x, y) dx =

∫
K̂

f (x(ξ, η), y(ξ, η)) detJ dξη.

5 FEM, 1D
Consider the following weak form: Find u such that∫ b

a

du

dx

dv

dx
dx+

∫ b

a

uv dx =

∫ b

a

fv dx for all v

We want to approximate u and du
dx using Galerkin’s method using one or several basis functions ϕi. More

precisely we want to find a set of discrete values ui such that u ≈
∑n
i=1 ϕiui = ϕ ·u and du

dx ≈
∑n
i=1

dϕi

dx ui =
dϕ
dx · u, where ϕ = [ϕ1, ϕ2, ..., ϕn] and u = [u1, u2, ..., un]

T
. We insert the approximation into the weak form

and get:

∫ b

a

du

dx

dv

dx
dx ≈

∫ b

a

n∑
i=1

(
dϕi
dx

ui

)
dϕj
dx

dx =

∫ b

a

dϕi
dx

dϕj
dx

dx (u1, ..., un)
T

=

∫ b

a

(
dϕ

dx

)T

dϕ

dx
dx u = Su

and ∫ b

a

uv dx ≈
∫ b

a

(
n∑
i=1

ϕiui

)
ϕj dx =

∫ b

a

ϕiϕj dx (u1, ..., un)
T

=

∫ b

a

ϕ
T
ϕ dx u = Mu

and with
∫ b
a
fv dx =

[
du
dxv
]b
a

= f we arrive at

(S + M) u = f

6 FEM, heat conduction 2D
The governing equation for heat conduction: −∇· (k∇u) = f in Ω, u = gD on ∂ΩD, −kn ·∇u = gF on ∂ΩF .
Weak form: find u, such that∫

Ω

k∇u · ∇v dΩ =

∫
Ω

fv dΩ +

∫
∂ΩF

gF v ds for all v, v = 0 on ∂ΩD.

Approximation u ≈ U =
∑n
i=1 ϕi(x, y)ui = ϕ ·u, ∇U = Bu leading to Su = f , where ϕ = [ϕ1, ϕ2, ..., ϕn],

u = [u1, u2, ..., un]
T
,

B =

∂ϕ1

∂x
∂ϕ2

∂x · · · ∂ϕn

∂x

∂ϕ1

∂y
∂ϕ2

∂y · · · ∂ϕn

∂y

 , SK =

∫
K

B
T
kB dK, fK =

∫
K

ϕ
T
f dK +

∫
∂KF

ϕ
T
gF ds,

where SK is the element stiffness matrix for element K and fK the element load vector.

6

7 FEM, elasticity 2D
The governing equation for static linear elasticity:

−∇ · σ = f in Ω(equilibrium)
σ = λ∇ · uI + 2µε(u) in Ω(small strain material behaviour, Hooke’s law)

u = 0 on ∂ΩD(prescribed displacements)
σ · n = t on ∂ΩF (prescribed traction forces),

where the Lamé parameters are defined as

λ =
Eν

(1 + ν)(1− 2ν)
(Plane strain) or λ =

Eν

1− ν2
(Plane stress),

µ =
E

2(1 + ν)
,

and where E is the Young’s modulus and ν the Poisson’s ratio.
Weak form: find u such that∫

Ω

σ(v) : ε(v) dΩ =

∫
Ω

f · vdΩ +

∫
ΩF

g · v ds for all v, v = 0 on ∂ΩD.

Mandel notation

σM =


σx

σy

τxy

 εM (u) =


εx

εy
√

2εxy

 =


∂
∂x 0

0 ∂
∂y

1√
2
∂
∂y

1√
2
∂
∂x


ux
uy

 =


∂ux

∂x

∂uy

∂y

1√
2
∂ux

∂y
1√
2

∂uy

∂x


and we have that ε : ε = εM · εM and σ : ε = ε

T

MσM .
Approximation u ≈ U =

(∑n
i=1 ϕi(x, y)uix,

∑n
i=1 ϕi(x, y)uiy

)
= Φu, where

Φ =

ϕ1 0 ϕ2 0 ... ϕn 0

0 ϕ1 0 ϕ2 ... 0 ϕn

 , u =
[
u1
x u1

y u2
x u2

y · · ·
]T
.

Then

SK :=

∫
K

(2µBT
ε Bε + λBT

divBdiv)dK

where

Bε :=


∂ϕ1

∂x 0 ∂ϕ2

∂x 0 ...

0 ∂ϕ1

∂y 0 ∂ϕ2

∂y ...

1√
2

∂ϕ1

∂y
1√
2

∂ϕ1

∂x
1√
2

∂ϕ2

∂y
1√
2

∂ϕ2

∂x ...



7

and

Bdiv :=
[
∂ϕ1

∂x
∂ϕ1

∂y
∂ϕ2

∂x
∂ϕ2

∂y ...
]
.

Similary the load element vector is defined by

fK :=

∫
K

Φ
T
f(x) dK +

∫
∂KF

Φ
T
gF dK

which leads to the linear system Su = f .

8 Post processing of linear elasticity

8.1 Computing the strain matrix

ε =

 ∂ux

∂x
1
2

(
∂ux

∂y +
∂uy

∂x

)
1
2

(
∂ux

∂y +
∂uy

∂x

)
∂uy

∂y

 =
1

2

(
∇uT +∇u

)
this is approximated, using the basis functions, by

ε(u) ≈ εa(u) =

 ∂ϕ
∂x · ux

1
2

(
∂ϕ
∂y · ux + ∂ϕ

∂x · uy
)

1
2

(
∂ϕ
∂y · ux + ∂ϕ

∂x · uy
)

∂ϕ
∂y · uy


where ∂ϕ

∂x =
[
∂ϕ1

∂x
∂ϕ2

∂x · · · ∂ϕn

∂x

]
, ϕ = ϕ(x, y) and ux =

[
u1
x u2

x · · · unx

]T
. Using

B =

∂ϕ1

∂x
∂ϕ2

∂x · · · ∂ϕn

∂x

∂ϕ1

∂y
∂ϕ2

∂y · · · ∂ϕn

∂y


and ∇u = Bu we arrive at

εa(u) =
1

2

(
∇uT +∇u

)
=

1

2

(
(Bu)

T
+ Bu

)
8.2 Computing the stress matrix from the strain

σ = 2µε(u) + λtrε(u)I ≈ 2µεa(u) + λtrεa(u)I ≈

σx τxy

τxy σy


where trε(u) = εx(u) + εy(u) = ∇ · u ≈ ∂ϕ

∂x · ux + ∂ϕ
∂y · uy.

8

8.3 Computing principle stresses/ strains
Solve |σ − ΣI| = 0, with |.| = det(.) which leads to the equation

Σ2 − (σx + σy)Σ + σxσy − τ2
xy = 0

note that (σx +σy) = trσ and σxσy − τ2
xy = |σ|, so Σ1,2 = 1

2 trσ±
√(

1
2 trσ

)2 − |σ|, where Σ1 and Σ2 are the
principal stresses. The principal strains can be computed the same way. In MATLAB this is done by the
eig() function, see the help files for more info.

8.4 Equivalent strain
A scalar quantity called the equivalent strain, or the von Mises strain, is often used to describe the state of
strain in solids.

εeq =

√
2

3
εdev : εdev =

√
2

3
εdev
ij εdev

ij ; εdev = ε− 1

3
tr(ε)I

8.5 Von Mises stress

State of stress Boundary Conditions von Mises Equations

General 3D No restrictions σv =

√
1
2

[
(σx − σy)

2
+ (σy − σz)2

+ (σz − σx)
2

+ 6
(
σ2
xy + σ2

yz + σ2
zx

)]
General plane stress (2D) σz = σyz = σzx = 0 σv =

√
σ2
x − σxσy + σ2

y + 3σ2
xy

8.6 L2 projection
If we want to take a field that exists inside the elements and put it in the nodes we basically want to minimize
u−uh, where uh is the element field and u is the nodal field. We chose to minimze the error on average, this
means that we want to minimize

ε :=

√∫
Ω

(u− uh)
2
dΩ

We can achive this by setting up the problem: Find u such that∫
Ω

(u− uh) v dΩ = 0

Rewrite this by multiplying v into the parenthesis∫
Ω

uv dΩ =

∫
Ω

uhv dΩ

Now apply Galerkin and approximate u ≈
∑
i ϕiui and insert into the equation above∫

Ω

ϕiϕj dΩui =

∫
Ω

uhϕj dΩ

9

or

Mu = f

we can then get the averaged nodal values by

u = M−1f

10

